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Abstract. New second-order accurate finite difference approximations for a class of 
nonlinear PDE's of mixed type, which includes the 2D Low Frequency Transonic Small 
Disturbance equation (TSD) and the 2D Full Potential equation (FP), are presented. 

For the TSD equation, the scheme is implemented via a time splitting algorithm; the 
inclusion of flux limiters keeps the total variation nonincreasing and eliminates spurious 
oscillations near shocks. Global Linear Stability, Total Variation Diminishing and En- 
tropy Stability results are proven. Numerical results for the flow over a thin airfoil are 
presented. Current techniques used to solve the TSD equation may easily be extended 
to second-order accuracy by this method. 

For the FP equation, the new scheme requires no subsonic/supersonic switching and 
no numerical flux biasing. Global Linear Stability for all values of the Mach number is 
proven. 

Introduction. Recently, a number of new shock-capturing finite difference ap- 
proximations for solving scalar conservation law nonlinear partial differential equa- 
tions in several space dimensions have been constructed and applied to solve numer- 
ically the equations of inviscid compressible flows of aerodynamics. Those partial 
differential equations are, in the time-independent (steady) case, of mixed type, 
i.e., their type changes from elliptic to hyperbolic as the flow regime changes from 
subsonic to supersonic and vice versa. 

In this paper, we present some new shock-capturing finite difference approxi- 
mations for solving scalar conservation laws. Our new schemes have the following 
properties: 

(i) second-order accuracy throughout the computational domain; 
(ii) global linear stability in all elliptic and all hyperbolic regions; 
(iii) sharp steady discrete shock solutions; 
(iv) total variation nonincreasing property of the approximate solutions; 
(v) entropy stability, at least in some cases, i.e., the approximate solutions satisfy 

a discrete entropy condition consistent with the differential entropy condition of 
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the PDE; this property ensures that the approximate solutions are admissible on 
physical grounds. 

A model 2D conservation law equation is constructed and a finite difference ap- 
proximation scheme is proposed for this model equation. The above properties are 
proven for this scheme. This model can serve to represent and solve numerically two 
commonly used equations for simulating inviscid, isentropic potential flow problems 
at transonic speeds: the Transonic Small Disturbance (TSD) equation and the Full 
Potential (FP) equation. The new schemes are studied first in their semidiscrete 
(method of lines) version. A new Alternate Direction Implicit (ADI)-like time dis- 
cretization is also presented for the particular application to the low-frequency, 
unsteady, two-dimensional TSD equation. 

In [2], [19], [18], [14] and [3], a number of shock-capturing finite difference ap- 
proximations for solving the TSD and the FP equations have been proposed. These 
schemes satisfy properties (iii) and (v), and with the inclusion of flux limiters, prop- 
erty (iv) as well. Properties (i) and (ii) are usually satisfied in all elliptic regions; 
in hyperbolic regions, only first-order accuracy is attained and the linear stabil- 
ity of the method is typically limited to values of the Mach number in [0, Me], 
where M, is large enough to include the transonic regime. These schemes have a 
four-point bandwidth and are type-dependent, i.e., they use different formulas for 
the difference approximations in the elliptic and the hyperbolic regions. They use 
central differencing in the elliptic regions and upwind differencing in the hyperbolic 
regions. The upwinding is designed to take into account the correct region of influ- 
ence and to keep the shock front sharper. For the TSD equation, since the flow is 
quasi-unidirectional, the upwinding is performed in that direction [3]. For the FP 
equation, the upwinding can be performed separately for the x-dependent term and 
the y-dependent term. This approach was labeled directional flux biasing in [14]. 
Recently, this approach was refined by introducing the method of streamwise flux 
biasing (see [17]) in which the upwinding is performed in a direction close to that 
of the actual flow. Unfortunately, the method hence obtained is only first-order 
accurate (see [11, Section 8] for a review of the schemes based on this method). 

Our new method does not use flux biasing, but a special kind of upwinding 
uniformly in all regions. The resulting stencil, the same in all regions, is of 7-point 
bandwidth, with 4 points upwind and 2 points downwind. 

The format of this paper is as follows. In Section 1 we introduce our new 
second-order accurate numerical schemes for a class of 2D conservation law non- 
linear PDE's, which includes the TSD equation and the FP equation. We prove 
a convergence result a la Lax-Wendroff. In Section 2 we prove the linear stability 
of these schemes for the most commonly used numerical fluxes for the TSD equa- 
tion and the FP equation. In Section 3 we present an extended version of these 
schemes which makes use of flux limiters to keep the total variation nonincreasing. 
In Section 4 we prove a discrete entropy inequality satisfied by our finite difference 
approximation in the case of the low-frequency, unsteady TSD equation, and we 
show that this inequality is consistent with the differential entropy inequality of 
the problem. In Section 5 we describe a time-splitting algorithm for solving the 
unsteady TSD equation. 
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1. New Second-Order Accurate Schemes for 2D Scalar Conservation 
Laws. In this section, we introduce our model equation and our new schemes for 
two-dimensional, nonlinear, scalar conservation law PDE's [12], and we present a 
convergence theorem a la Lax-Wendroff. 

1.1. Model Equation. We consider the following 2D model scalar conservation 
law: 

atFo(v4) + V * F V) = O. (MODEL) 

where Fo and F are smooth functions of their arguments and V = [ax, 0]T to be 
solved for (x, y) E Ql, with fl a region of R2, and for t > 0, together with: 

(i) some initial conditions: P(x, y, 0) = (o(x, y) for (x, y) E fl, where 4O is 
assumed to be such that V(Po E L1 (f) n LOO (f) n BV(Q), and 

(ii) some boundary conditions on XI. 
This model initial-boundary value problem includes the following two problems for 
the isentropic flow over an airfoil at transonic speeds (for the derivation of these two 
problems from the basic conservation equations of fluid dynamics, see [11, Section 
1]): 

1.1.1. Example 1. TRansonic Small Disturbance Equation. Choosing: 

Fo(V4) = 2kaP, 1 F(V') = [f( A) -a f(u) = u2 - Ku, 

where' K = (1 - M )/[M 6]2/3, and fl is the domain shown in Figure 1, yields 
the TSD equation 

2katAxP + axf(axO ) -aa = 0. (TSD) 

The boundary conditions are: 

(i) the tangential velocity condition on the airfoil: ayPIana = xh+ ;2/3 ath, 
where Qa is the slit2 {(x,y) E l I y = 0,0 < x < 1} and 

(ii) some computational farfield boundary conditions on aO[\fla, typically a com- 
bination of Dirichlet and Neuman boundary conditions. 

FIGURE 1 
Computational domain for the TSD equation 

'K is the transonic similarity parameter; M. is the freestream Mach number, and 6 < 1 is 
the airfoil thickness ratio. 

2y = ?i4/3M/3 max[0,h(x,t)],0 < x < 1, describes the shape of the airfoil in similarity 
variables. 
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1.1.2. Example 2. Full Potential Equation. Choosing Fo(V(P) = p(IV(PI), 
C(V'P) = p(IVIV)VP, where p(q) = [1 - M0,(q2 - 1)]'/(-1), and 0 is the 

domain shown in Figure 2, yields the FP equation 

9tP(IVI) + V [p(IVPI)VM ] = 0. (FP) 

The boundary conditions are: 
(i) the tangential velocity condition on the airfoil Oa (no boundary layer effects): 

ay/0/lx40I8Ia = 6 dH/dx, where Ofa = {(xy) E Q I y = ?6 max[O, H(x, t)]}, and 
(ii) some computational farfield boundary conditions on &A\Oa, typically a com- 

bination of Dirichlet and Neuman boundary conditions. 

JL ~ J 

FIGURE 2 

Computational domain for the FP equation 

1.2. Semidiscrete Finite Difference Approximations. We now consider a semidis- 
crete, method of lines approximation to the model equation (MODEL). We subdi- 
vide the region Q (assumed to be the rectangle [a, b] x [c, d] for simplicity) into cells 
of the form 

Wijk = {(x,y) E xJ 1/2 < X < Xj+1/2,Yk-1/2 < Y < Yk+1/2}, 

where a < ..< Xj-112 < Xj+112 < ..< b, c < ..< Yk-1/2 < Yk+1/2 < < d. 

Let (xi, Yk) denote the center of the cell Wjk. Set ?x., = Xj+l/2 - XJ1/2, iLYk = 

Yk+1/2 - Yk-1/2 and Ax = maxj Axj, Ay = maXk ?Yk. For each t > 0, define the 
step function 1A(x, y, t) = Ijk(t), for (x, y) E Wjk. The initial data is discretized 
via 7k (O) _ TA4(x, y) for (x, y) E Wjk, where the space-averaging operator TA 
is defined by 

T (XII ,y) 
=meas(wjk) L| ( xX) dak jk (-) 

for (x,y) E Wjk. 

At grid point (xi, Yk), we approximate 

{ ? k jk) 
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A method of lines, conservation law discretization of the initial-boundary value 
problem (MODEL)+initial conditions is: 

f OtFo (L-4jk) + L _ HF(L-_,ki L+ ,jk) = 07 (MODEL-scheme) 
4 j k (0) - TDo (x, y). 

In the above, 4? are difference operators which approximate V with second-order 
accuracy (examples of such difference operators follow), i.e., for any step function 

jk, we have 

ILjA'k - V J(xj, Yk)I = O(Lx2) +O(Ly2) for all j, k, 

and the numerical flux H is assumed to satisfy the following consistency condition: 

H (q-, q- ) = F (q-). 

For any step function OJ'k, we define the following discrete operators: 

Sj~ k = Tj? 1, k, S'jk = jkil, 

?4 = T[I- Si], ?4=T[I- S4], 

Dx = Ai/Aix,, Dy = /Ay y 

Dx = (S -S?x)/(S -S?x)xj, Dy = (S+- Sy)/(S+ - S-y)Yk, 
Lx =Dx +Sj(Dx-Dx), L4=JD+SjY(DoY-Do). 

In the case of a uniform mesh (Axj L=\x, IAYk L y), the difference operators 
L' and LY take the simpler form 

Lx = D'(1 TF ' ) and LY = D(1 T'4). 

THEOREM 1.1. Let TL be a smooth function defined on Q and let Tjk be the 
step function TA (x, y). Then the above difference operators satisfy the following 
accuracy properties: 

(i) LxjJ?'k = O9x I(Xj,Yk) + O(Ax2), LY Tjk = aOJ?( x +k) +O(Ay2); 

(ii) DY D+ Tjk = 9y9yT(Xj, k) + O(AY ) 

Proof. The proof of this theorem follows directly from the definition of Lx, Dy 
and a Taylor series expansion. o 

LEMMA 1. 2. Let Da denote either DA or Dy, S? denote either Sx or SY, 
and La denote either LA or LY. 

For any step functions Tjk and 'Jk, the following "product rule" identities hold: 

(i) TjkD?T'k + (S?'l.k)(D?qjk) = D?(Tjk jk); 

(ii) (S?'Ijk)(Do 'Ik) + (ST Jk)(Do Ijk) = DO('jk J; 
(iii) TJjkD+D-A'k - T'!kD+Dijk = D+[TjkD-Ak -'QkD-'Qjk]; 

(iv) (S+S+Qjk)L-T'k + (SS-T'k)L+'jk = Do[(S+ @jk) (S- ak)] + 
(S+S+Tjk)A-DT'jk - (SS-Tk)L+D+Tjk. 

Proof. The above identities can be verified by inspection. 0 
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1.2.1. Example 1. Transonic Small Disturbance Equation. A second-order accu- 
rate method of lines finite difference approximation to the TSD equation is obtained 
by the choice of 

L4 = [L IDy H (q q+) = [h(u_,u+),-v+]T, where q? = [uv?]T. 

THEOREM 1.3. Suppose that 'Djk(t) is determined by 

f 2katLx (Pik + Lx h(Lx 4Ajk, Lx~jk) - Dy Dy 4jk = (TSD-scheme) 

where h is a numerical flux satisfying the consistency condition h(u, u) = f(u). 
Suppose that 41jk, Lx 4k and D4bjk converge boundedly a.e. as Ax, Ay - 0+ to 
4?, Ax4 and a94, respectively. Then 4 is a weak solution3 of 

2katax4d + axf(ax4t)- = 0, (TSD) 

D b(x, y, O) = 4o(x, y). 

Proof (a la Lax- Wendroff [9]). Let T E Co? ((Q x [0, T]) be a test function. Set 

Tjk( ) = TAT (x, y, .). Since ' has compact support, we have 

Z AxDo[(SIx 'jk) * Sx (dt Ijk + h(LxA 4jk, LxA 4jk))] = 0 

For any Qik, in particular for Qik = at??jk and Qik = h(Lx 4jk, Lx Ajk), we have 

(Axj)(S S Qjk)(Ax D jk) = O(AX). 

Since ' has compact support, we have 

Z 
(AYk)D4 [4qjkDy Tjk -jkD_ 4?jk] = 0 

k 

Multiply (TSD-scheme) by S+S+fAj k(t)AxjAyk, sum over j, k and integrate over 
[0, oo) with respect to t. 

Using integration by parts (with respect to t), summation by parts (via the 
properties of Lemma 1.2) and the above observations, we obtain 

Z AXj AYk (2kS_ S_' 4tjk (O) * L+ Tjk (?) 
j,k 

+ f dt[2k(Sx Sx 4tjk) (Lx at Tk) 

- (Sx Sx h(Lx 4tjk, Lx 4tjk)) (Lx Sx Sx Tjk) 

-4 jkD D_ S_ S j = 0. 

Taking the limit as Ax, Ay -- 0+, using the consistency condition and Theorem 
1.1, and applying the Lebesgue Dominated Convergence Theorem, we obtain 

ff dw (2kH~od*(o) + f dt [2k4tataI' -f (xDA)axT - 4day1Ii) = 

i.e., 4b is a weak solution of (TSD). o 

3For a review of the theory of weak solutions, see appendix A in [111. 
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1.2.2. Example 2. Full Potential Equation. A second-order accurate method of 
lines finite difference approximation to the TSD equation is obtained by the choice 
of 

L(i) = - {L`(.)}, {14(.)}+-{La, (.)}( ]T 

and 

H(q ,- q+) = q- lq+ 

where, for any real number x, we set x? = 2(X?IXI). 

THEOREM 1.4. Suppose that '1jk (t) is determined by 

f atp(ILAjkI) + L_ [P(IL-'jk)L+4?jkI = (FP-scheme) 

1Djk (0) = T 4o(xy). 

Suppose that 4Ijk, LI 4k and LY 4fjk converge boundedly a.e. as Ax, Ay -A 0+ to 
4?, AxT4 and 9a4, respectively.4 Then 4 is a weak solution of 

f atp(1V41) + V [p(IV4I)N ] = OX (FP) 
1. 4(xy, 0) = 4O(x, y). 

Proof (a la Lax-Wendroff). We look only at the case 9A>, dy, > 0; the other 
cases are treated in a similar fashion. Let T E Co? ((Q x [0, T]) be a test function. 
Set 'j'() - TA I(x, y, *) and Pjk = P(I L- -jk I) Since I has compact support, we 
have 

(Axj)D' [(S' (PjkL 4t.Ak))(S- SI SI Tjk)I = 0, 
j 

(AYk)DS [(S+pjkLy Djk))(SyS!SYjk)I = 0 
k 

Multiply (FP-scheme) by TIjk(t)AxjAyk, sum over j, k and integrate over [0, xo) 
with respect to t. Using integration by parts (with respect to t), summation by 
parts (via the properties of Lemma 1.2) and the above observations, we obtain 

E AXjAYk (Pjk(O) jk(O) + j dt [Pjkat J jk 
j,k 

+([S_ SI (Pjktx'4jk)]LxS S_X Ask) 

+ ([Sn S?/(pjkL+4Djk)]LtSYSY~jk)I) =. 

Taking the limit as Ax, Ay A 0+, using the consistency condition and Theorem 
1.1, and applying the Lebesgue Dominated Convergence Theorem, we obtain 

ff dw (p(KVoI)I(O) + dt[p(jV41)V4 VT]=0, 

i.e., 4 is a weak solution of (FP). 0 

4That is, Li4jk- Vi boundedly a.e. as Ax, Ay -* 0+. 
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2, Linear Stability Analysis. In this section, we derive a necessary and 
sufficient condition for the finite difference method (MODEL-scheme) of Section 1 
to be linearly stable. For the sake of simplicity, a uniform mesh of cell size Ax x Ay 
is assumed. All the results of this section also hold if a variable mesh is assumed. 

2.1. Necessary and Sufficient Condition for Linear Stability. 

LEMMA 2.1. Assume that the (consistent) numerical flux H in (MODEL- 
scheme) is differentiable. Apply the method (MODEL-scheme) to 

4jk (t) = (jAx, kAy) q'+ 6kjk (t), 

e small, where q = [u, v]T is a constant state. Set q = Iqi. Then the linearized 
method of lines corresponding to (MODEL-scheme) is given by 

O 
F0 -d 

aq (q-) L- Oik 

+L_ [ q q * L_0jk+ _ (q'q)*L+ik] =0, 

(linearized-MODEL-scheme) 

where denotes the vector dot product and * denotes the matrix-vector multiplica- 
tion. 

Proof. The linearized finite difference method is obtained using the following 

equations: 

Ltjk = q+ eLF jk, 

Fo(LAak) = Fo(q ) + e aF0 ) Ljk + 0(e2), 

Fo(L _4jk) = OF( L_ + o 2 ) q (j_) - L , 0( L- )2 
IId aqq@+q- + 0(e2), 

dt - (2.1) (qOF q [O*LOjk +i = 0q, q * L+Ojk] + 0. 

THEOREM 2 . 2. A necessary and sufficient condition for the method (linearized- 

.MODEL-scheme) to be stable is that the operator d/dt satisfies the inequality 
Re dt < ?, where - denotes the Fourier transform and dt is given by 

(2.1) q -(L +L- [ (q_( qo ) t _ + ] 

For our two generic examples, we prove below that the linearized methods corre- 

sponding to (TSD-scheme) and (FP-scheme) satisfy the condition of Theorem 2.2. 

We need first the following lemma. 
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LEMMA 2.3. The first-order accurate difference operators Dy and the second- 
order accurate difference operators LI and Ly defined in Section 1 satisfy the 
following equations: 

(i) bYDb =-_ ( 2a 2 

(ii) LA = F2 s3 +ic(1+2s2)I, 1y = -[:F23 +iy(1 +2 2)I; 

2 / 2u 
(iii) L+Lx = (1 +382) L+L- - _ ( 3 

where c and -y are the Fourier variables and where we set 

* a * p a 
s =sin2-' a = sin 2 ' c= cos - and = cos 2 

Proof. The proof of this lemma is purely algebraic and is left to the reader. 0 
2.2. Example 1. Transonic Small Disturbance Equation. 

LEMMA 2.4. Assume that h(u-, u+) is a differentiable numerical flux. A nec- 
essary and sufficient condition for the method (TSD-scheme) to be linearly stable 
is that the operator d/dt in 

2kLx OjkLX [Oh (U U)LXq5.k + hU (U, U)LXjkl dkL ajkk+-[u- Ou+ 

- Dy Dy q5k = 0 (linearized-TSD-scheme) 

satisfies the inequality Re d < 0 dt - 

Proof. The result of this lemma is an immediate application of Theorem 2.2, 
since 

OF0 + Of! - [ = [au+h(u, U) ]1 
M O HO aH NO-(u0) a1- 

Oq-#[ 0 -iJ 0 

THEOREM 2.5. A sufficient condition for the method (TSD-scheme) to be lin- 
early stable is 

(2.2) O~~h Oh (2.2) 0 (Uu) - Ou (u, u) > 0. 

Proof. Assume that (2.2) holds. By part (ii) of Lemma 2.3, we have 

484 
Re L =-Re L- =Z >0. 

By part (i) of Lemma 2.3, we have 

DbDb - 2 < 0. 
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Moreover, [Lx ]-1 = LX /LX LX; thus by parts (ii) and (iii) of Lemma 2.3, 

=182 Re[Lx-]-l= + Ax >0. 

Substitution into (linearized-TSD-scheme) multiplied by [Lx-]-1 then implies 

Re d < 0, thus, by Lemma 2.4, the method (TSD-scheme) is linearly stable. 0 

Remark. The sufficient condition (2.2) is satisfied for most commonly used differ- 
entiable numerical fluxes, in particular differentiable monotone fluxes. For example, 
one can use any of the following fluxes: 

hE(u, u+) = f [f'(u)]+ du + [f l'(u)]- du + f( U) 
(Engquist-Osher) 

hLF(U_,U+) = 2[f(U_) + aU_] + 1[f(u+) - au+], where a> If> I 
(Lax-Friedrichs) 

[U+ (u-) if M <1 
h NS (u_, U+) u (No-Switch-type5) 

j _ f (u+) if Moo> 1. 
u+ 

2.3. Example 2. Full Potential Equation. For the FP example, we further 
introduce the following streamwise and normal finite difference operators6 

L? -- L. (streamwise) 
q 

L_ x L). (i^ x in). (normal) 

LEMMA 2.6. The streamwise and normal finite difference operators LI and 
Ln satisfy the following equations: 

(ii) Ln = 2K[2 (I _l +~ 4\ .77 I (r sc(1 + 2s2) + U'(1 + 2U2) 
- 

) Ln = 2 2 ( _Ax + /y + A J A 

(iii) L+ L_ = LsLs + LL2 = L+Lx + LY+LY, 

(iv) L+ = [2 s(1+3s ) 

+247sa[4s2a2(sasign[47] + c-y) + c-y(1 + 2s2 + 2a2)] 
+x Ay Ax y 

222a21(1+3u2)] 

+ (AX)2 ~ ~ ~ ~ ~ + A) 

5For the TSD equation, this flux, introduced by the author in [111, has the advantage that no 
local switching is needed. 

61f 9xt', aV > 0, then Li = qLJ + VL4I and LI - - JL + qL~I where u,v > 0. The 
other cases yield similar expressions. 
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(v) L+Ln = _4 (AX) 

247qsa[4s2a2(sasign[6rq] + c-y) + c-y(l + 2s2 + 2a2)] 
AxAy 

(2U2 (1 +3af2)' 
+ 

(Ay)2 

(vi) L+L` < 0; 
(vii) LnLn < on 

where we set , = u/q and 17 = v/q. 

Proof. The proof of the above equalities is purely algebraic and can be found in 
[11]. o 

LEMMA 2.7. The following relations hold: 

p'(q) =-p(q) 
M2(q) and d [p(q)q] = p(q)[1 - M2(q)], q dqr~'JJ- 

where the Mach number M(q) is defined by M(q) = q/a(q), and a(q) is the local 
8peed of 8ound related to the density p(q) by the isentropic relation a2 = p-jl /M2 . 

Proof. This is a simple consequence of the definition of the functions p(q) and 
M(q) 0 

THEOREM 2.8. The method (FP-scheme) is linearly stable. 

Proof. Assume7 x4Y, 0,4 > 0 (thus u, v > 0). We have 

H q-, q ) = p(q-)q7+, -q() = p,(q), 

At(q) q ) = P (q) -- X4 ,q q') = ) [? 1 ] 

Set p = p(q) and M = M(q). Then, using Lemma 2.7, the linearized finite difference 
method corresponding to (FP-scheme) can be rewritten as 

- djk + L_[- M *L-jk+pL+/jkJ =0. 

(linearized-FP-scheme) 
Using 

-0 2r [q q ]0 L q (q L) [q- )2, 

(linearized-FP-scheme) can be rewritten as 

(Ls d +q [(Ls)2 M2L- L+]) 'kjk =0, 

7The proof for the other cases is similar. 
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and (2.1) reduces to 

(2.3) L dt + q[(L )2 - L_ L+] = 0. 

By part (i) of Lemma 2.6, we have Re V > 0. By part (iii) of Lemma 2.6, we 

have L_ * L+ < 0. Moreover, [Ls -1 - L /L- L+; thus by parts (i) and (vi) of 
Lemma 2.6, we have Re[L ]1 > 0. Substitution into (2.3) multiplied by [Ls -1 

then implies Re dt < 0, hence, by Corollary 2.2, the method (FP-scheme) is linearly dt - 

stable. 0 

3. Total Variation Stability. A desirable property for a numerical scheme 
is a bound on the total variation of its approximate solutions. This ensures that 
overshoots and undershoots near shocks do not appear in the approximate solutions. 

In this section, we propose a technique to render the method (MODEL-scheme) 
introduced in Section 1 total variation stable by applying flux limiters to the non- 
linear terms of the difference equations, dimension by dimension. For the sake of 
simplicity, a uniform mesh is assumed. The generalization to a nonuniform mesh 
is straightforward. 

It turns out that the new method obtained using this technique specializes, in 
the one-dimensional case, to an extension of the generalized MUSCL8 schemes, 
which have been used to solve the well-known inviscid Burgers' equation (see [13]). 

We observe that, when restricted to the iD case, both the TSD equation and the 
FP equation have the form of the inviscid Burgers' equation. In the case of the TSD 
equation, the iD restriction of (MODEL-limited-scheme) can easily be written as a 
generalized MUSCL scheme. In the case of the FP equation, the iD restriction of 
(MODEL-limited-scheme) can be written as an extension of a generalized MUSCL 
scheme which we will introduce. 

3.1. Total Variation Nonincreasing Version of our Model Scheme. We extend 
the second-order accurate method (MODEL-scheme) introduced in Section 1 to 

atFo(iLA(jk) + L_ H(L kALk) =0?, (MODEL-limited-scheme) 

where L? are difference operators which approximate V with second-order accu- 
racy. 

We define some limited second-order difference operators by 

ki=D" + m (SI(DO;- Do;)I Dx Dx) 

and 

y= + m(Sy(DO - Du), D- Do). 

In the above, the minmod function m is defined by 

M(uI u+ ) = {0 min( u- l lu+ l ) if sgn(u-) = sgn(u+) = s 
m= {sn(0 u 4 Iu+I) else J 

- sgn(u-) . max[O,mrin(1u-1, u+ sgn(u-)]. 

8The notion of MUSCL (Monotone Upstream Centered Schemes for Conservation Laws) 
schemes is due to van Leer (see [20]). 
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In the uniform mesh case, we have 

LX = Dx T 1 m(DxAx , Dx Ax) and 4Y =lDT Fm(DAy4, DY Ay). 

For the TSD case, we choose 

k = [14i,1]T. 

For the FP case, we choose 

Lj) = [ ()}+ {LX()} {()}I - ()} 

3.2. One-Dimensional Case/Inviscid Burgers' Equation. We now look at the 
one-dimensional inviscid Burgers' equation 

atu + axf (u) = 0, (Burgers) 

where f is a convex function. Consider the following method of lines conservation 
form finite difference approximation to Burgers' equation: 

atUj-1/2 + DX h(uj-1/2, uj+1/2) = 0, (Burgers-scheme) 

where the numerical flux h is assumed to satisfy the consistency condition h(u, u) = 

f (u). We recall some definitions and a theorem due to Osher. 
Definition 3.1. The numerical flux h is said to be monotone if h(u, u+) is a 

nondecreasing function of -u+ and of u-. 
The method (Burgers-scheme) is said to be a monotone scheme if its numerical 

flux is monotone. In particular, if h is Cl, a necessary and sufficient condition for 
the method (Burgers-scheme) to be monotone is dh/du+ < 0 < h/au_. 

Definition 3.2. The numerical flux h(u, u+) is said to be an E-flux (see [15]) if 
the following condition holds: 

sgn(u+-u_)[h(u_,u+)-f (u)] < 0 for any u EI[u_,u+]9 

E-fluxes can be characterized as the fluxes for which 

sgn(u+ - u)[h(u, u+) - hG(u_, u+)] > 0, 

where 

hG (u_,U+) = ~min[_,u+] f if u- < u+ 
max[u+,u-I f if U-. > u+J 

is the Godunov numerical flux ([5]). The method (Burgers-scheme) is said to be an 
E-scheme if its numerical flux is an E-flux. 

Definition 3.3. Define the total variation of the function u by: 

TV(u) = Z IL+Uj-1/2I, 

where uj-1/2 = TA u. 

9I[a, b] denotes the closed interval [min(a, b), max(a, b)] and 

sgn (a) {ax/lal if ax 7& o e 
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The method (Burgers-scheme) is said to be total variation nonincreasing10 if the 
total variation of its solutions satisfies 

TV[u(t)] < TV[u(O)] for all t > 0. 

In [7], Harten showed that a sufficient condition for the (2p + 1)-point scheme 

atUj-1/2 + Dx h(uj-p+1/2, ... * uj1/2, uj+1/2, * *, uftj+p.1/2) = 0 

to be TVD is that the flux h satisfies an incremental form 

(3.1) D-h(uj-p+1/2, ... ., uj-i/2, uj+1/2,* Uj+p-1/2) 

( -CtD+uj-1/2 + Cj- D-uj-1/2 

where 
Ct = C+(Uj-p+1/2,. ... * Uj- 1/2, Uj+1/2, * . * Uj+p-1/2) 

Cj_ 1 = C_ (Uj-p- 1/2 i Uj -1/2 i Uj+ 1/2 * * Uj+p-3/2) 

for some nonnegative functions C+ and C-. We now extend (Burgers-scheme) to 
a second-order accurate TVD scheme. 

THEOREM 3.4 (OSHER [13]). Consider the scheme 

OtUi-1/2 +Dx.h (uj-1/ + =0. 
j2j-1/2i Uj+1/2- 2 'j+1/2 

(MUSCL-scheme) 
If h(u, u+) is an E-flux (resp. a differentiable monotone flux), then the above 
scheme is TVD provided that the following condition holds: 

<' / i Ax+7j-1/2A ? D 2 < 1 resp 1 > ? - near points where O). 

3.3. Example 1. Transonic Small Disturbance Equation. We now propose a 
limited version of (TSD-scheme), 

2katLx_4jk + Lxih(L ijk, L+xtk) - D' D 4tik = 0. (TSD-limited-scheme) 

The 1D restriction of the TSD equation, 

2katOax + axf(axh) = 0, where f(u) = _ 2 U2 - Ku, 2 

can be rewritten as Burgers' equation 

atu + af(u) = 0, where u =_ Oa. 

We note that f"(u) = -y + 1 > 0, i.e., f is a convex function. The y-independent 
restriction of (TSD-limited-scheme) is given by 

(3.2) 2katLV Ajk + Iz h(kz Ajk, 4+4jk) = 0. 

THEOREM 3.5. If h is either a consistent E-flux or a consistent differentiable 
monotone flux, then the scheme (3.2) is TVD. 

10This concept was first introduced in [7]. Traditionally, the abbreviation TVD (total variation 
diminishing) is preferred to TVNI. 
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Proof. Set uj_1/2 = DI 4j and 0j-1/2 = m(DI uj_1/2, DI+uj1/2).11 Equation 
(3.2) then takes the form 

(1 + A2 /) [2katui1/2 + D'.h uj-1/2 + 1/2 - 2 j+1/2 =0, 

which is of the form (MUSCL-scheme). 
It is immediate from the definition of 0j-1/2 and the definition of the minmod 

function that the first condition of Theorem 3.4 is always satisfied. The second 
condition of Theorem 3.4 follows from12 

1 Uj+112 - Oj-1/2 
21 DI+Uj-1/2 

1 | m(D~up 1/2, D~uj+1/2) _1m(Dfupi/2, DIuj.1/2) 1 
2 D~+uj_1/2 D+uj_1/2-2 ' 

because of the following property of the minmod function: 

m(xy) 
E[0,1] ifx0o, m(X y) 

E[0,1] ify$0. 
3; y 

Therefore, (3.2) is TVD for any consistent numerical flux h which is either an E- 
flux or a differentiable monotone flux. This class of numerical fluxes contains the 
most commonly used ones. 0 

3.4. Example 2. Full Potential Equation. We now propose a limited version of 
(FP-scheme), 

atp(IL q4jkl) + L_ * [P(ILjkI)-+4jkI = 0, (FP-limited-scheme) 

where we set Lf = [i],LjT. 
The 1D restriction of the FP equation, 

atp(q) + ax[p(q)q] = 0, where p(q) = [- - 2 M2 (q2 - 1)] 

can be rewritten as Burgers' equation 

atU + Oxf(u) =0, 

where 

u_= -p and f(u) = uq(u), q(u) [1+ -(1]M2 ] 

We note that, by Lemma 2.7, we have 

f'(u) = q(u)[1 _ M-2(q(u))] 

thus f' > 0 (resp. f' < 0) in supersonic (resp. subsonic) regions and 

f"(u) = .(.iM-2 (q(u))[y + M-2(q(u))] > 0, 

i.e., f is a convex function. 

"The k-subscripts axe dropped for the sake of clarity. 
12Without loss of generality we can assume Dxuj$1/2 0 0. 
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The 1D restriction of (FP-limited-scheme) is given by 

(3.3) atp(IL"AjkI) + L' [p(ILz DjkI)L4+jk] = 0. 

THEOREM 3.6. The scheme (3.3) is TVD in the linear case. 

Proof. Set13 qj-1/2 = DI4j and uj.1/2 = -A-1p(Aqj../2), i.e., qj-1/2 = 

A 1q(Au.-1/ 2), where A = 1 + 1Az and where we formally define 

A-1 = E(-"Ax)n 
nEZ+ 

Set Uj-1/2 = m(Dx.qj-1/2, Dxiqj-1/2) and h(q_, q+) = -p(q_)q+. Equation (3.3) 
then14 takes the form 

- (1 + 2S) [atUj-1/2 + Dx.h (qj-1/2 + -2aj-l/2,qj+1/2- 2=0,. 

that is, 

atUj-1/2 + Dxih (qj-1/2 + 42Orj-l/2,qj+l/2- 2 aj+l/2) =0 

(extended-MUSCL-scheme) 
Note that: 

(i) h(q(u_), q(u+)) is consistent with f, since 

h(q(u), q(u)) = -p(q(u))q(u) = uq(u) = f (u); 

(ii) h is an E-flux, since for any q E I[q_, q+], we have 

sgn(q+ - q_) * [p(q_) - p(q)] > 0 since p'(q) < 0. 

Thus, 

sgn(q+ - q_) [h(q_ I q+) - h(q, q)] = -sgn(q+ - q_) [p(q-)q+ - p(q)q] 
< sgn[p(q)(q+ -q_)] (q - q+) < 0, 

since p(q) > 0, and (q+ - q_)(q - q+) < 0; 
(iii) h is a differentiable monotone flux, since 

Ah p(q.) M2 (q.) O Ah -q q+) = p~_M(-q+, O a~nd ah(q-, q+) = -p(q-) < o. 
o~q- q- q+0 n 

For the linear case, let 4j(t) = -qjAx + eoj(t), e small, where q is a constant state. 
Set Vj_ 1/2 = Dx qj and Sj- 1/2 = m(Dx vj- 1/2, Dxvj 1/2) . Using 

qj-1/2=q + Ev-1/2 

= -A'p(Aqj_ 1/2) = -p(4) + E _ vp.j_1/2 + O(E2), q 
Oj-1/2 = m(ED!Vj-1/2, EDx Vj-1/2) = 68j-1/2i 

'3The k-subscripts are dropped for the sake of clarity. 
14in the case Ox 4o > 0; the case Ox 4o < 0 can be treated in a similar fashion. 
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qj ?1/2+ 2~ Ufi?/2=__-4+E Vj?1/2F 2x Sj?1/2, qji 2 2 

h qjp1/2+ 2Ax uj-1/2iqj+1/2 - j+1/2) 

p(q)M2 (q)+ 2 Sj-l/2iVj+l/2 - 2j +1/2) + 0(62), 

where we set l(v.,v+) = 4[v_ - M-2(4)v+], yields the linear version of scheme 

(3.3), 

(3.4) atVjl/2 + D I vj-/2 + 2 Ax =? 1j+-8j-.1/2iVj+1/2 - ji+1/2) 

Note that I is an E-flux, since for any v E I[v_, v+] we have 

sgn(v+ - v.) * [I(v_, v+) - l(v, v)] 

= qsgn(v+ - v.) [I(v._ -v) - M-2(q)(v+ -v)] <0. 

The inequality 0 < ?j-1/2/DoUj-1/2 < 1 is immediate from the definition of Sj-1/2 

and the definition of the minmod function; therefore, the first condition of Theorem 
3.4 is satisfied, and the scheme (3.4) is TVD, i.e., the scheme (3.3) is TVD in the 
linear case.'5 0 

For the nonlinear case, it is not possible to apply Theorem 3.4, and it appears 
difficult to obtain an incremental form such as (3.1). 

Numerical evidence supporting or contradicting total variation stability for the 
scheme (3.3) in the nonlinear case will be presented in a subsequent paper. 

4. Entropy Condition for the TSD Scheme. In this section, we prove that 
the approximate solutions of our new second-order accurate, TVD, semidiscrete 
finite difference method (TSD-limited-scheme) for the low-frequency unsteady TSD 
equation satisfy a discrete entropy inequality, which guarantees that they converge 
to the unique (physical) solution of (TSD). 

We restrict ourselves to the case when an E-flux is used as a building block. For 
the sake of simplicity, a uniform mesh is assumed. 

Part of the proof of the main theorem of this section relies on arguments similar 
to the ones found in [3] and [13] and makes use of Plancherel's theorem. 

4.1. Differential Entropy Inequality. Up to some resealing of t (2k = 1), the 
low-frequency, unsteady TSD equation (TSD) of Section 1 can be rewritten as the 
following system: 

(4.1) at[4zx 01 + ax[f (4?), 4y + a'9-y 1AtY, I y = [0, 01 

151 is also a differentiable monotone flux, so we could also have used the second condition of 
Theorem 3.4. 
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This system is symmetrizable16 by multiplying it by 

Vb aq _2Iq]q 

The entropy function is V (q) = Iu2, and the corresponding entropy fluxes are 

F (1) (q) uf'(u) du+ v2 and F(2)()= -uV 

where. q= [u, v]T. 

The resulting differential entropy inequality is 

(4.2) V+ V* [F(1) (V4), F(2) (V~)]T <O. 

It is well known that weak solutions of (4.1) are not unique and that the differential 
entropy inequality (4.2) is satisfied (in the weak sense) only by the physical solution, 
i.e., the one which does not admit expansion shocks.17 

In the next subsection, we show that (TSD-limited-scheme) satisfies a discrete 
entropy inequality which implies (4.2), thus the approximate solutions converge to 
the unique (physical) solution of the problem. 

4.2. Discrete Entropy Inequality. Consider the second-order accurate TVD 
scheme for the TSD equation derived in Section 3: 

atLx 4jk + Lxih(Lx-4jk, L+4jk) - DDY 4jk = 0, (TSD-limited-scheme) 

where h is a Lipschitz continuous E-flux consistent with the convex function f. Set 

Uj_1/2,k = D_ 4jk, Vi,k-1/2 = D_ 4jk 

and 

'j-1/2,k = m(Dx.Uj.1/2,k, DxUj-1/2,k). 

The scheme can be rewritten as 

(4.3) atUj-1/2,k + D_ h (U1/2,k + 20j-1/2,ki Uj+1/2,k - 2j j+1/2,k) 

-[1+ -1 D2+vj,k-1/2 =0. 

The following equations hold: 

(i) Uj-1/2,katUj-1/2,k = at [2Uj_1/2,k] 

'6The reader is referred to [8], [4] and [10] for an interesting discussion on the derivation of 
additional systems of conservation laws, additional symmetric hyperbolic systems of conservation 
laws and an entropy inequality from a given system of nonlinear conservation laws. See also 
Appendix A in [11]. 

17In [10], Mock showed that (4.2) is equivalent to the (distribution) inequality a3a.0 < 0. 
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(ii) 

Uj-l/2,kDh (Uj1/2,k + 2x j-1/2,k Uj+1/2,ky- 2 j+1/2,k) 

rUj - 
1/2, k Uj 

- 
1/2, k 

= Dfs uf'(u) du - D+[Uj-1/2,kf(Uj-1/2,k)] + D f f(u) du 

+ D+ [Uj.1/2,kh (Uj -1/2,k + 2O'jO1/2,ki Uj+1/2,k - 
2 cj+1/2,k)] 

- [D+Uj l/2,k~h (Uj1/2,k + 2Oij-1/2,k,Uj+1/2,k- 2 'j+1/2,k) 

Uj- 1/2,k 
= DX [ uf'(u) du + Uj-1/2,k 

x {h (Uj-1/2,k + j20i-1/2,kUj+1/2,k - 2 'j+1/2,k) 

f(Uj.1/2,k)}] 

I jS+1/2,k [fAx Ax ,,]du 
-r Ih (Uj_1/2,k + 2ij-1/2,k, Uj+1/2,k- 2Oaj+1/2,k) - (U)] ; 

ti-1/2,k L\2Ax 

i(iii) 

-Uj.1/2,k [1 + 2AXj - + 

= -Uj-1/2,k+Vjk-1/2- Uj-1/2,k [[i 2 
+ 

] 

= -D [Uj-1/2,kVj,k-1/2] + [D+ Ujp_1/2,k]Vj,k+1/2 

Uj.1/2,k [[1 + -] 1- DyVj,k_1/2 

= DYF(2)(Uj_1/2,kVj~k-1/) V+ [D _Vi,k+1/2]Vj,k+1/2 + (uj-.1/2,ki V3,k-.1/2) +[x 

Uj.1/2,k [[1 + -] 1- DyVj,k- 1/2 

=D+F (2 (U;- 1/2,k, Vj,k-.1/2) + D+ [2Vj-,k+1/2] 

+ 2 [D _Vj,k+,2I -1U2 1/2,k [[ 2 + +AS] - D~vjk-1/2 

=DYF (2) (Uj-1/2,k, V3,k-1/2) + D+ [v2 ,k+,2] + 2[D.DY 12 

- DX 4jk [[1 + -A-] - ]D Dy 4~jk* 

Thus, multiplying the scheme (4.3) by Uj-l/2,k yields 

OtVik + D+ F32l+/2,k + 1(,k-/2 -[I]-[II] = 0 
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where 

Vjk = V(DA' jk, ), 

Fj(1)1/ F(') (Dx- 4jk, Sx DY 4jk) + [III], 

F (21/2 =F(2) (Dx 4jk, DY 4jk)i 
= fUj+1/2,k h (U + l/2,kU - 2i+1l/2, k) - f(U)] d 

[II] = D- A~k [ l+ 2 / -]~ -] ID+Di4)jk -y2[DS D8+Aik]27 

[III] = Up.1/2,k [h (Uj-1/2,k + 2Oij-1/2,kiUj+1/2,k - 2 j+1/2,k U 

-f(Uj-1/2,k)] 

LEMMA 4.)1. The quantity [I] is <0 . 

Proof. We first note that, since 1A-x(A-1/2,k +xj+/2,k)/(2D~uj.1/2,k) e [0,11, 
we have 

sgn [(Uj+1/2,k - 2Orj+1/2,k) - (Uj-1/2,k + 2Oaj-1/2,k)] 

sgn Ax+Uj-1/2,k [1 - 2Di ] }1 = sgn(Axuj-1/2,k). + 
2Dx~~~ 3j-1/2, k 

Therefore, for any Ujk, [I] can be written as 

[I] = IDxuj-l/2,kI[A1 +1[B] 

where the quantities [A] and [B] have the following expressions: 

[A] = sgn [(Uj+1/2,k - 2T?j+1/2,k) - (Uj-1/2,k + 2Uj-1/2,k)] 

[ I' Ax Ax] 
[h KUj1/2,k + 2 j-1/2,k7Uj+1/2,k- -2 j+1/2,k) -f(Ujk)J, 

fmaX(Uj. 1/2,kUj+ 1/2,k) 

[B] = sgn(Aux j1/2,k)] [f(iijk) - f(u)] du. 
min(uj -1/2,k ,Uj+ 1/2,k) 

Set Ujk = (Uj_1/2,k + Uj+1/2,k)/2. 

(i) In the case of a rarefaction (Uj-l/2,k < Uj+1/2,k), we have D uj_1/2,k > 0 
and 

Uj_1/2,k < Uj_1/2,k + 2j-112,k < Ujk 
(4.4) -? 

< Uj+1/2,k -A 2 j+112,k < Uj+1/2,k- 
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Choose Ujk = Ujk. In view of inequalities (4.4) and the assumption that h is an 
E-flux, we have [A] < 0. Since f is convex, we have 

f(uk ) = f ( Uj_1/2,k + Uj+l/2 Uj.1/2,k ) = (| U du/) 

< ] | f (u) AX U A/2,k Uj_1/2,k uj-1/2,k 

thus 
rUj+ 1/2,k 

[B] = j [f (Ujk)- f(u)] du < 0. 
Uj_ 1/2,k 

(ii) In the case of a shock (Uj+1/2,k < Uj31/2,k), we have Diuj-1/2,k < 0 and 

Ax 
Uj+1/2,k < Uj+l/2,k - j20'j+1/2,k 

Ax 
< Ujk < Uj_1/2,k + j20j-1/2,k < Uj_1/2,k, 

where OUj?1/2,k =-min(-DxuUjp1/2,k, IDxUji1/2,kl). 

In view of inequalities (4.5) and the assumption that h is an E-flux, we have 

[A]?O ifii~~ke Ax Ax 
[A] < O if ijk E 1Uj+1/2,k -2 Oj+1/2,ki Uj_1/2,k + j2Oi-1/2,kJ 

The quantity [B] is given by 

fUj.- 1/2,k 

[B] [f (u) -f (iijk)] du. 
Uj+ 1/2,k 

Let u denote the sonic point (f'(u) = 0). Assume that the shock is nonsonic, i.e., 

U [Uj+ 1/2,k, Uj-1/2,k]. Let 

fUj 1/2,k uf'(u) du 

(4.6) Uijk = 
u+/, 

f (Uj-1/2,k) -f (Uj+1/2,k) 

We then have 

Uj3 1/2,k 

[B] = J [f (u) -f (ijk)] du 
Uj+ 1/2,k 

Uj- 1/2,k 

[f(U) - f(iijk) - (U - Ujk)f (u)] du. 
Uj+1/2,k 

Set g(u) = f(u) - f(iijk) - (u - iijk)f '(u). Since g'(u) =-(u - uk)f (u), and 

since f is convex, g has an absolute maximum at u = Ujk, thus g(u) < g(iijk) = 0, 

which yields [B] < 0. 

For any u E [uj+1/2,k, uj-l/2,k], we have 

sgnf '(u) = sgn[f(u- 1/2,k) - f(Uj+1/2,k)] = sgn(Ujk - U) 

"8By Jensen's inequality 
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Moreover, 

Ujk - Ujk 

(Uj-1/2,k - Uj+1/2,k)/2 
= Uj-1/2,k U - Ujk f'(u) du 

Uj+1/2,k (Uj-1/2,k - Uj+1/2,k)/2 f (Uj _1/2,k) -f (Uj3+1/2,k) 

thus Ujk E [Uj+1/2,kUj-1/2,k] and 21iijk - UjkI - (Uj31/2,k - Uj+1/2,k) < 0. 

The condition 
Ax Ax 

Uijk E Uj+1/2,k - 2 jj+1/2,k, Uj-1/2,k + 2 'j-1/2,k 

i.e., 

Ujk - Ujk e O- Axj+l/2,k , +1 + AXO'j-1/2,k 

(Uj_1/2,k- Uj+1/2,k)/2 
E 

Uj-1/2,k - Uj+1/2,k Uj_ 1/2,k - Uj+1/2,k. 

is satisfied if we change Uj-1/2,k and aj+1/2,k to 

AXafj_112,k = max[2Iiijk - UjkI - (Uj-1/2,k - Uj+1/2,k)i 

- min(uj_ 1/2,k - Uj_1/2,k, [Uj+1/2,k - Uj_3/2,kI)]I 

AXurj+1/2,k = max[2Iiijk - UjkI - (Uj -1/2,k - Uj+1/2,k), 

- min(uj_ 1/2,k - Uj+1/2,k, [Uj+1/2,k - Uj+3/2,kI+)]I 

These changes are necessary only if Uj-1/2,k < Uj-3/2,k or Uj+1/2,k > Uj+3/2,k. 

The second-order accuracy is not affected, since 
rUj -1/2, k 

(u - Ujk) du =0 
Uj+ 1/2,k 

and 
fUj -1/2, k )2 1 ) j12k-U+/, 

] (U-Ujk) du = 6 (Uj-1/2,k - Uj+1/2,k) Uj.1/2,k Uj+1/2,k 
Uj+ 1/2,k 2 

and 
fUi.-1/2,k 

(- k)2 f (s).-f'(tsk) d 
fi -Uk= uj + 1/ 

2,-k 
(U- 

tkS-U~jk Ujk - Ujk = f~u3f j1/2,k) - f (Uj+ 1/2,k) 

thus 

IUjk - UjkI 

(Uj -1/2,k - Uj+1/2,k)/2 

6(Uj-1/2,k 
- 

Uj+1/2,k) max 

If(Uj_1/2,k)-f (Uj+1/2,k)I/(Uj.-1/2,k-Uj+1/2,k) [uj+1/2,k,Uj_ 1/2,k] 

and 

21iijk - Ujkl - (Uj31/2,k -Uj+1/2,k) = O(IUj-1/2,k - Uj+1/2,k 12). 
In the case 

'1 +1( 2 2 f~~) (u -2Uu), 

we obtain 

k (U+1/2,k + Uj+1/2,kUj-1/2,k + Ufr.1/2,k) - UUjk 

Ujk - U 
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and 
Ujk - Ujk = _ j-1/2,k - Uj+1/2,k Uj-1/2,k - Uj+1/2,k 

Ujk-Ujk6 2 Ujk- 

thus 

2Iiijk - UjkI - (Uj-1/2,k - Uj+l/2,k) 

(Uj-1/2,k - Uj+1/2,k) [ Uj_1/2,k - Uj+1/2,k -i 
16 Ujk - UI 

Assume now that the shock is sonic, i.e., ul E [Uj+1/2,k,Uj-1/2,k]. We restrict 

aj-1/2,k and Oj+1/2,k to be 0 (at the loss of second-order accuracy). 
If f (uj-2,,) # f (ui+1/2,k), then choose ujk as given by formula (4.6). 
Else, choose Ujk such that f(iijk) = max[uI+l/2,kUj-l/2,k] f* 

LEMMA 4.2. Let %Pjk(t) = TAT(t), where IQ is a nonnegative test function 
with compact support C Q x [0, T]. Then we have Ejk[II]*jkAXy <0 . 

Proof. We first recall Plancherel's theorem. If a = {ajk}, b = {bjk} E 12, we 

define 

(a,b)12 = ZkaJjk&AxLy, 1a12 = (a,a)12, 

j,k 

a = {aJ,K} ={Zkajke-ijJAxeik A)yLXZY 

(ab)L2 = ZKaJKbJK?XLy and IaIL2 = (&,&)L2. 

J,K 

Plancherel's theorem states that 

1a12 = IaIL2 and (a, b)12 = (ab)L2. 

We can write 

z[II]TjkLXLY 
j,k 

= ( j [[i? 21] i] DDk+ 

- #[DD+ (jk]2) 'jk?XLY 

= Re (V'iDz di [ [1+ AL ] - 1] DY4DYAb) 
- ~~~~~~~~~ 

-1~~~~~~~~_ I +D AXbl2 

= Re (v'b4D , ' [1 + 2Ay ] - 1] Dyb ) 

_ 1 1 /S4D+ DY |2 1 

(continues) 
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(continued) 

= Re (D_ [1 + -Ax] 1] D+D- -2 I1x L ) 

X |'JKg JK |2IA XLY 

=ELxRe ([[1+2_]Y -1]_- D 2 i 'IJKDJKIXY 

?0, 

since Re 

([[1+ 21 

1] 2sin2 J </2 0. 
LEMMA 4.3. We have a.e. limAx- o[III] = 0. 

Proof. This is due to the Lipschitz continuity of h, the continuity of f and of 
the minmod function, and the consistency condition: 

a.e. rmn 'h Uj-1/2,k + 2aj-1/2k Uj+ 1/2k - 2 0'+1/2,k -f(Uj3 1/2,k)] 
LXX+0 2 '' yj+ 

=a.e. rim h Uj-1/2,k + 2O'j-1/2k, Uj+1/2,k- -2 Oj+1/2,k 
Ax-*O LX 2 ' 2 ',~~A 

-f (Uj-1/2,k- -2 ad_1/2,k)] 

+ a.e. rmn [f (Uj-1/2,k - 2 j-1/2,k -f(Uj-1/2,k)] = 0. D 

THEOREM 4.4. Suppose that (jk, Lx cIjk and DY (jk converge boundedly a. e. 
as Ax, Ay 0+ to 1?, dA? and ay(D, respectively. Further, assume that f is convex 
and that h is a Lipschitz continuous E-flux consistent with f. 

Then TX is a weak solution of (TSD-limited-scheme) which satisfies the entropy 
inequality (4.2). 

Proof. Using Theorem 1.3, we only have to prove that TX satisfies the distribution 
inequality (4.2). By Lemma 4.1, we have 

dtVjk + D+EYl,/2,k + DF,k)t1/2 = [I] + [II] < [II] 

Let IQ be a nonnegative test function with compact support c Q x [0, T] and set 
Pjk (t) = TA T(t). 

Multiplying (4.3) by Uj-1/2,kL\XL\Y = Dx(jkAXLy, summing over j, k and 
using Lemma 4.2 yields 

Y'XALY'1jk[dOtVjk + Dx F(1) + DLF (2) , + j-1/2,k + j,k-1/21 < 0. 
j,k 

Using the summation by parts formulas of Lemma 1.2, the fact that IQ has compact 
support, and integrating with respect to t over [0, oo) yields 

- j dt i ALXY[[dt'jk]Vjk + [Dx'jk]Fl)(/2, + [DY'jk]F] 1/2] <0. 
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Taking the limit as Ax, LAy -- 0+ and using Lemma 4.3 and Lebesgue's Dominated 

Convergence Theorem yields 

-fffdt dtdxdy{k [at]V(V4P) + [dxI]F(1)(V) + [dyi']F(2)(V4)} < 0, 

i.e., the difference approximations 1Djk satisfy the entropy condition (4.2) in the 
limit. 0 

This theorem ensures that, if the difference approximations (TSD-limited- 
scheme) converge, then the limit solution is the unique (physical) solution of the 
problem. 

Remark. It should be noted, however, that the steady-state limits are not neces- 
sarily unique. 

5. Time Discretization of the TSD Scheme. In this section, we present 
an implicit, forward Euler type time discretization of the method (TSD-scheme) 
introduced in Section 1 and of its TVD extension (TSD-limited-scheme) introduced 
in Section 4. This time discretization uses time-splitting in a fashion similar to that 
of the Alternate Direction Implicit (ADI) method. The ADI method has been used 
extensively for implementing first-order accurate finite difference schemes for the 
TSD equation (see, e.g., [21], [16] and [6]). Others have used an Approximate 
Factorization (AF) method instead of the ADI method (see e.g. [1]). The time- 
splitting algorithms presented here were implemented by the author and will be 
presented in a subsequent paper. (Preliminary results can be found in [11].) 

5.1. Time-Splitting Algorithm. The unlimited version of our time-splitting 
method can be written as: 

(5.1a) P 2kL_ At 
Dn h L i 4V 

_k, Lx 4>Dn) + h (Lx 41k Lq> _7k jk_ jk' + jk)h( jk' +jk 
(5.la) x-sweep: 2kLx +j~j hLxcInL+Jn 

At ~~~~~~~2 
-D8D~jk=0, 

(5. lb) sweep: 2kLx ,k ok L 1 Y DY ((Dn+l - Dn ) = 

A~t 2 +jk 
k 

This method is linearly stable as proved in Theorem 5.1 below. 
5.2. Linear Stability Analysis. Using the same notations as in Section 2, the 

amplification coefficient of the time-splitting algorithm (5.1) is given by 

A~t [ h dh 
1-Z 1 +Z' Z4k [dU(UU)Lx+9 U (Uu)L+J G = , where{ 

~~~~~~1 + -',=A LX )-1DY Do 

and the expressions for Lx and DY b_ are given in Lemma 2.3. 
Thus, 

G12 _1 - 2 Re z + IZ12 1 + 2 Re z' + Jz112 

1+2Rez+Iz12 1-2Rez'+Iz'12 

We have Re z' < 0. Moreover, if dh/u- - ah/du+ > 0, then Re z > 0, thus 

IGI < 1. This yields the following theorem. 
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THEOREM 5. 1. The method (5.1) is linearly stable unconditionally for any dif- 
ferentiable consistent numerical flux h which satisfies the condition 

Ah Ah 
Y ~TI_ - 

_a + 
5.3. Time-Splitting Algorithm with TVD Flux Limiters. The limited version of 

our time-splitting method can be written as 

(5.2a) x-sweep: 2kL' ;; k 
- + Lx h(L-'k,4 k) + h(LX k ijk) 

A~t 2 

,Dn+l - -DD Dk=0, 
(5.2b) y-sweep: 2kLx jk 3k -DY D+ (bDn+l n ?' 

A Lt 2 jk k 
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